Phytoplankton Assemblage Characteristics in Recurrently Fluctuating Environments
نویسندگان
چکیده
Annual variations in biogeochemical and physical processes can lead to nutrient variability and seasonal patterns in phytoplankton productivity and assemblage structure. In many coastal systems river inflow and water exchange with the ocean varies seasonally, and alternating periods can arise where the nutrient most limiting to phytoplankton growth switches. Transitions between these alternating periods can be sudden or gradual and this depends on human activities, such as reservoir construction and interbasin water transfers. How such activities might influence phytoplankton assemblages is largely unknown. Here, we employed a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect characteristics of phytoplankton assemblages. The model is based on the Monod-relationship, predicting an instantaneous growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig's Law of the Minimum. Our simulated phytoplankton assemblages self-organized from species rich pools over a 15-year period, and only the surviving species were considered as assemblage members. Using the model, we explored the interactive effects of complementarity level in trait trade-offs within phytoplankton assemblages and the amount of noise in the resource supply concentrations. We found that the effect of shift from a sudden resource supply transition to a gradual one, as observed in systems impacted by watershed development, was dependent on the level of complementarity. In the extremes, phytoplankton species richness and relative overyielding increased when complementarity was lowest, and phytoplankton biomass increased greatly when complementarity was highest. For low-complementarity simulations, the persistence of poorer-performing phytoplankton species of intermediate R*s led to higher richness and relative overyielding. For high-complementarity simulations, the formation of phytoplankton species clusters and niche compression enabled higher biomass accumulation. Our findings suggest that an understanding of factors influencing the emergence of life history traits important to complementarity is necessary to predict the impact of watershed development on phytoplankton productivity and assemblage structure.
منابع مشابه
Biophysical modelling of phytoplankton communities from first principles using two-layered spheres: Equivalent Algal Populations (EAP) model.
There is a pressing need for improved bio-optical models of high biomass waters as eutrophication of coastal and inland waters becomes an increasing problem. Seasonal boom conditions in the Southern Benguela and persistent harmful algal production in various inland waters in Southern Africa present valuable opportunities for the development of such modelling capabilities. The phytoplankton-domi...
متن کاملOptical assessment of particle size and composition in the Santa Barbara Channel, California.
The suspended particle assemblage in complex coastal waters is a mixture of living phytoplankton, other autochthonous matter, and materials of terrestrial origin. The characterization of suspended particles is important for understanding regional primary productivity and rates of carbon sequestration, the fate of anthropogenic materials released to the coastal environment, as well as its effect...
متن کاملFunctional Redundancy Facilitates Resilience of Subarctic Phytoplankton Assemblages toward Ocean Acidification and High Irradiance
In order to understand how ocean acidification (OA) and enhanced irradiance levels might alter phytoplankton eco-physiology, productivity and species composition, we conducted an incubation experiment with a natural plankton assemblage from subsurface Subarctic waters (Davis Strait, 63N). The phytoplankton assemblage was exposed to 380 and 1,000 μatm pCO2 at both 15 and 35% surface irradiance o...
متن کاملPhytoplankton Succession in Recurrently Fluctuating Environments
Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of tra...
متن کاملPhytoplankton as bio-indicator of water quality in Sefid Rud River, Iran (South of Caspian Sea)
Phytoplanktons are the first bio- indicators of pollution in aquatic ecosystems. Phytoplankton assemblage and aquatic ecosystems are always influenced by environmental factors therefore these environmental changes and threats must be understood in any ecosystem. Phytoplankton are inexpensive and readily available bio- indicators. In the present study, phytoplankton were used to study the Sefid ...
متن کامل